A Comparison of the Eigenvalues of the Dirac and Laplace Operator on the Two-dimensional Torus
نویسنده
چکیده
A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Abstract We compare the eigenvalues of the Dirac and Laplace operator on a two-dimensional torus with respect to the trivial spin structure. In particular, we compute their variation up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and discuss several families of examples.
منابع مشابه
operator on the two-dimensional torus. ∗
A comparison of the eigenvalues of the Dirac and Laplace operator on the two-dimensional torus. Abstract We compare the eigenvalues of the Dirac and Laplace operator on a two-dimensional torus with respect to the trivial spin structure. In particular, we compute their variation up to order 4 upon deformation of the flat metric, study the corresponding Hamiltonian and discuss several families of...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملSpectral estimates on 2-tori
We prove upper and lower bounds for the eigenvalues of the Dirac operator and the Laplace operator on 2-dimensional tori. In particluar we give a lower bound for the first eigenvalue of the Dirac operator for non-trivial spin structures. It is the only explicit estimate for eigenvalues of the Dirac operator known so far that uses information about the spin structure. As a corollary we obtain lo...
متن کاملThe Dirac Operator on Nilmanifolds and Collapsing Circle Bundles by Bernd Ammann and Christian Bär November , 1997
We compute the spectrum of the Dirac operator on 3-dimensional Heisenberg manifolds. The behavior under collapse to the 2-torus is studied. Depending on the spin structure either all eigenvalues tend to ±∞ or there are eigenvalues converging to those of the torus. This is shown to be true in general for collapsing circle bundles with totally geodesic fibers. Using the Hopf fibration we use this...
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کامل